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3-manifolds efficiently bound 4-manifolds

Francesco Costantino and Dylan Thurston

Abstract

It has been known since 1954 that every 3-manifold bounds a 4-manifold. Thus, for instance,
every 3-manifold has a surgery diagram. There are several proofs of this fact, but little attention
has been paid to the complexity of the 4-manifold produced. Given a 3-manifold M 3 of complexity
n, we construct a 4-manifold bounded by M of complexity O(n2 ), where the ‘complexity’ of a
piecewise-linear manifold is the minimum number of n-simplices in a triangulation.

The proof goes through the notion of ‘shadow complexity’ of a 3-manifold M . A shadow of M
is a well-behaved 2-dimensional spine of a 4-manifold bounded by M . We further prove that,
for a manifold M satisfying the geometrization conjecture with Gromov norm G and shadow
complexity S, we have c1G � S � c2G

2 , for suitable constants c1 , c2 . In particular, the manifolds
with shadow complexity 0 are the graph manifolds.

In addition, we give an O(n4 ) bound for the complexity of a spin 4-manifold bounding a given
spin 3-manifold. We also show that every stable map from a 3-manifold M with Gromov norm
G to R2 has at least G/10 crossing singularities, and if M is hyperbolic there is a map with at
most c3G

2 crossing singularities.

1. Introduction

Among the different methods of representing 3-manifolds combinatorially, two of the most
popular are triangulations and surgery on a link. A triangulation is a very natural way to
represent 3-manifolds, and any other representation of a 3-manifold is easy to turn into a
triangulation. On the other hand, although some 3-manifold invariants may be computed
directly from a triangulation (for example, the Turaev–Viro invariants), not all can be, and it
is difficult to visualize the combinatorial structure of a triangulation.

A more typical way to present a 3-manifold is via Dehn surgery on a link. In practice, there
are simple descriptions of small manifolds via surgery, and this is generally the preferred way
of representing manifolds. There are many more invariants that may be computed directly
from a surgery diagram, like the Witten–Reshetikhin–Turaev invariants. It is easy to turn a
surgery diagram into a triangulation of the manifold [40]. However, for the other direction,
passing from triangulations to surgery diagrams, little seems to be known. In particular, it
is an open question whether a surgery diagram must (asymptotically) be more complicated
than a triangulation. For a more general setting of this problem, consider that if all the
surgery coefficients are integers, a surgery diagram naturally gives a 4-manifold bounded by the
3-manifold. This leads us to ask the central question of the paper.

Question 1.1. How efficiently do 3-manifolds bound 4-manifolds?
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To make this question more precise, let us make some definitions.

Definition 1.2. A ∆-complex is the quotient of a disjoint union of simplices by
identifications of their faces. (See [13, Section 2.1] for a complete definition. These are also
semi-simplicial complexes in the sense of Eilenberg and Zilber [6].) A ∆-triangulation is a
∆-complex whose underlying topological space is a manifold.

Definition 1.3. The complexity of a piecewise-linear oriented n-manifold Mn is the
minimal number of n-simplices in a ∆-triangulation of M ,

C(Mn ) = min
Triang. T of M

no. of n-simplices in T . (1.1)

Remark 1.4. Since the second barycentric subdivision of a ∆-triangulation is an ordinary
simplicial triangulation, C(M) would change only by at most a constant factor if we insisted
on simplicial triangulations in Definition 1.3.

Definition 1.5. The 3-dimensional boundary complexity function G3(k) is the minimal
complexity such that every 3-manifold of complexity at most k is bounded by a 4-manifold of
complexity at most G3(k).

We can think of G3(k) as a kind of topological isoperimetric inequality. We can now give a
concrete version of our original Question 1.1.

Question 1.6. What is the asymptotic growth rate of G3?

The first main result of this paper is that G3(k) = O(k2). More precisely, we have the
following theorem, which appears in Section 5.

Theorem 5.2. If a 3-manifold M has a ∆-triangulation with t tetrahedra, then there
exists a 4-manifold W such that ∂W = M and W has a ∆-triangulation with O(t2) simplices.
Moreover, W has ‘bounded geometry’. That is, there exists an integer c (not depending on M
and W ) such that each vertex of the triangulation of W is contained in fewer than c simplices.

The fact that W has bounded geometry makes the resulting representation nicer; in
particular, to check whether the topological space resulting from a triangulation is a manifold,
you need to decide whether the link of each simplex is a sphere. This is easy for dimension
n � 3, in NP for n = 4 (see [34]), unknown for n = 5, and undecidable for dimension n > 5 (see
[20, 24, 25]). In all cases, such complexity issues do not arise if the triangulation has bounded
geometry. Note that there is an evident linear lower bound for G3(k), since a triangulation for
a 4-manifold also gives a triangulation of its boundary.

We also prove a number of other related bounds that do not directly refer to 4-manifolds.
For instance, we have the following bound in terms of surgery, proved in Section 5.

Theorem 5.6. A finite-volume hyperbolic 3-manifold with volume V has a rational surgery
diagram with O(V 2) crossings.

Note that there may be an infinite number of 3-manifolds with volume less than the bound V ,
and likewise an infinite number of surgeries on a given link diagram; but in both cases the
manifolds come in families with some structure. In this case as well, there is a linear lower
bound: there are at least V/voct crossings in any surgery diagram for M , where voct ≈ 3.66
is the volume of a regular ideal hyperbolic octahedron. A somewhat weaker lower bound was
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proved by Lackenby [19]; the bound using voct comes from a decomposition into ideal octahedra,
one per crossing [29, 35].

For a clean statement about general 3-manifolds, we use the crucial notion of shadows,
which we recall in Section 3. For now, we just need to know that shadows are certain kinds
of decorated 2-complexes that can be used to represent both a 4-manifold and a 3-manifold
(on the boundary of the 4-manifold), and that a coarse notion of the complexity of a shadow
is the number of its vertices. There are an infinite number of 3-manifolds with shadows with
a given number of vertices, but as with hyperbolic volume and surgeries on a given link, they
come in families that can be understood. The shadow complexity sc(M) of a 3-manifold M is
the minimal number of vertices in any shadow for M .

The following theorems combine to say that the shadow complexity gives a coarse estimate
of the hyperbolic volume.

Theorems 3.37 and 5.5. There is a universal constant C > 0 such that every geometric
3-manifold M , with boundary empty or a union of tori, satisfies

vtet

2voct
‖M‖� sc(M) � C‖M‖2 .

The lower bound on sc(M) holds for all 3-manifolds.

Here vtet ≈ 1.01 is the volume of a regular ideal hyperbolic tetrahedron and voct is as above.
A geometric manifold is one that satisfies the geometrization conjecture [36]: it can be cut
along spheres and tori into pieces admitting a geometric structure. ‖M‖ is the Gromov norm
of M , which is defined for any 3-manifold, and for a geometric 3-manifold is 1/vtet times the
sum of the volumes of the hyperbolic pieces.

Note that there is no constant term in these theorems. The manifolds with shadows with
no vertices are the graph manifolds, the geometric manifolds with no hyperbolic pieces (see
Proposition 3.31).

Our techniques are based on maps from 3-manifolds to surfaces, so we can also phrase the
bounds in terms of the singularities of such maps. A crossing singularity is a singularity of the
type that we consider in Section 4.4: a point in R2 with two indefinite fold points in its inverse
image. For more background on the classification of the stable singularities of a map from a
3-manifold to a 2-manifold, see Levine [22, 23].

Theorems 3.38 and 5.7. A 3-manifold M has at least ‖M‖/10 crossing singularities in any
smooth, stable map π : M → R2 . There is a universal constant C such that if M is hyperbolic,
then M has a map to R2 with C‖M‖2 crossing singularities.

One related theorem was previously known: Saeki [33] showed that the manifolds with maps
to a surface with no crossing singularities are the graph manifolds. Gromov independently
proved [8] both these upper and lower bounds after this paper was written, as explained in
Section 1.3.

We also prove bounds for the complexity for 3-manifolds to bound special types of 4-manifolds
in the following theorems.

Theorem 5.3. A 3-manifold with a triangulation with k tetrahedra is the boundary of a
simply connected 4-manifold with O(k2) 4-simplices.

Theorem 6.1. A 3-manifold with a triangulation with k tetrahedra is the boundary of a
spin 4-manifold with O(k4) 4-simplices.

All the constants in these theorems can be made explicit, but since in general they are quite
bad, we have not given them explicitly. The exceptions are those in Theorems 3.37 and 3.38,
which are the best possible.
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As one application of the results above, let us mention computing invariants of 3-manifolds.
There are a number of 3-manifold invariants that are most easily computed from a 4-manifold
with boundary. (Often this is done via surgery diagrams, so the 4-manifold is simply connected,
but there are usually more general constructions as well.) For instance, the Witten–Reshitikhin–
Turaev (WRT) quantum invariants are of this form [30, 31, 39], as is the Casson invariant [21].
(The original definition of the Casson invariant is 3-dimensional, but to compute it in practice,
the surgery formula is much easier.)

As one concrete example, Kirby and Melvin explained [17, 18] how to compute the WRT
invariant at a fourth root of unity as a sum over spin structures, which can be done concretely
given a surgery diagram. Although they show that the exact evaluation is NP-hard, our results
imply that the sum can be approximated (up to some error) in polynomial time using random
sampling over spin structures: for any given spin structure, we can, in polynomial time, find a
4-manifold which spin bounds the given 3-manifold and we can therefore compute the summand
at this spin structure. This contrasts with an unpublished result of Kitaev and Bravyi, who
showed that computing (up to the same error) the partition function of the corresponding
2-dimensional TQFT is BQP-complete, as soon as we allow evaluation of observables on closed
curves.

1.1. Plan of the paper

In the remainder of the introductory section, we survey some related work, first on different
kinds of topological isoperimetric functions, and second on other work considering our main
tool, namely stable maps from a 3-manifold to R2 . In Section 2, we sketch our construction in
the smooth setting and introduce the crucial tool of the Stein factorization, which shows how
2-complexes naturally arise. This section is not logically necessary for the rest of the paper,
although it does provide helpful motivation and a guide to the proof. These 2-complexes that
arise are studied more abstractly in Section 3, where we review the definition of shadow surfaces
and prove a number of their properties; here we also use the Gromov norm to prove all the
lower bounds in the theorems above. In Section 4 we give our main tool, a construction of a
shadow from a triangulated 3-manifold with a map to the plane, together with a bound on
the complexity of the resulting shadow. Section 4 is independent of Section 3 except for the
definition of shadows, and only uses Section 2 as motivation, so the impatient reader can skip
to there. In Section 5, we use this construction to prove the upper bounds of our main theorems
(except for the spin-bound case, Theorem 6.1) and see precisely how shadow complexity relates
to geometric notions on the complexity of the manifold. Finally, in Section 6 we show how to
modify an arbitrary shadow to get a 4-manifold that spin bounds a specified spin structure on
a 3-manifold, while controlling the complexity.

1.2. Related questions

Although the question we consider does not seem to have been previously addressed, there
has been related work. Perhaps the closest is the work on distance in the pants complex and
hyperbolic volumes. The pants complex is closely related to shadows; in particular, a sequence
of moves of length n in the pants complex can be turned into a shadow with n vertices for a
3-manifold which has two boundary components, so that the natural pants decomposition of
the boundary components corresponds to the start and end of the sequence of moves.

Theorem 1.7 (Brock [1, 2]). Given a surface S of genus g � 2, there are constants C1 , C2
so that for every pseudo-Anosov map ψ : S → S, we have

C1‖ψ‖Pants � vol(Tψ ) � C2‖ψ‖Pants ,

where Tψ is the mapping torus of ψ and ‖ψ‖Pants is the translation distance in the pants
complex.
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By the relation between moves in the pants complex and shadows mentioned above, this
shows that for 3-manifolds that fiber over the circle with fiber a surface of fixed genus, shadow
complexity is bounded above and below by a linear function of the hyperbolic volume. However,
the constant depends on the genus in an uncontrolled way. Our result gives a quadratic bound,
but with an explicit constant not depending on the genus. Brock’s construction also produces
shadows (and 4-manifolds) of a particular type.

More recently, Brock and Souto have announced that there is a similar bound for manifolds
with a Heegaard splitting with a fixed genus. In our language, their result says that a hyperbolic
manifold with a strongly irreducible Heegaard splitting of genus g has a shadow diagram
where the number of vertices is bounded by a linear function of the volume, with a constant
of proportionality depending only on the genus. (The result is probably true without the
assumption that the Heegaard splitting is strongly irreducible, but the statement becomes
more delicate in the language of the pants complex and we have not checked the details.) Their
method of proof does not produce any explicit constants.

There has also been work on the question of polygonal curves in R3 bounding surfaces.

Definition 1.8. The surface isoperimetric function Gsurf (k) is the minimal number, such
that every closed polygonal curve γ in R3 with at most k segments bounds an oriented polygonal
surface Σ with at most Gsurf (k) triangles.

Theorem 1.9 (Hass–Lagarias [9]). We have 1
2 k2 � Gsurf(k) � 7k2 .

This result contrasts sharply with the situation when we ask for the spanning surface Σ to
be a disk.

Definition 1.10. The disk isoperimetric function Gdisk(k) is the minimal number such
that every closed polygonal curve γ in R3 with at most k segments bounds an oriented polygonal
disk D with at most Gsurf (k) triangles.

Theorem 1.11 (Hass–Snoeyink–Thurston [11]). We have Gdisk(k) = eΩ(k) . That is, there
is a constant C such that, for sufficiently large k, Gdisk(k) � eC k .

Theorem 1.12 (Hass–Lagarias–Thurston [10]). We have Gdisk(k) = eO (k 2 ) . That is, there
is a constant C such that, for sufficiently large k, Gdisk(k) � eC k 2

.

Although there is a large gap between these upper and lower bounds, both bounds are
substantially larger than the bounds in Theorem 1.9, which was about arbitrary oriented
surfaces.

There is an analogous question on the growth of Gdisk for 3-manifolds rather than curves:
namely, asking for 4-balls bounding a 3-sphere with a given triangulation on the boundary. As
stated, this is not an interesting question, since we can construct such a triangulation by taking
the triangulated 3-ball and coning it to a point. This is related to the somewhat unsatisfactory
nature of the 4-manifold complexity (mentioned earlier). A more interesting question might
involve 4-manifold triangulations where the vertices have bounded geometry. For a somewhat
different question, there are known upper bounds.

Definition 1.13. The Pachner isoperimetric function GPachner(k) is the maximum over all
triangulations T of the 3-sphere with at most k simplices of the minimum number of Pachner
moves required to relate T to the standard triangulation, the boundary of a 4-simplex.
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Theorem 1.14 (King [16], Mijatović [28]). We have GPachner(k) = eO (k 2 ) .

Note that a sequence of Pachner moves as in the definition gives you, in particular, a
triangulation of the 4-ball, although you only get very special triangulations of the 4-ball
in this way.

As in the case of polygonal surfaces and disks, this upper bound is much larger than the
polynomial bound that we obtain. King [16] also constructs triangulations of S3 which seem
likely to require a large number of Pachner moves to simplify.

1.3. Other work

The central construction in our proof, a generic smooth map from a 3-manifold to R2 , has
been considered by several previous authors, sometimes with little contact with each other.
These maps were probably first considered by Burlet and de Rham [3], who showed that the
3-manifolds admitting a map with only definite fold singularities are connected sums of S1 × S2

(including S3). They also introduced the Stein factorization. Levine [23] clarified the structure
of the singularities and studied, for instance, related immersions of the 3-manifold into R4 .
Burlet and de Rham’s result was extended by Saeki [33], who showed that the 3-manifolds
admitting a map without codimension-2 singularities (that is, only definite or indefinite folds)
are the graph manifolds.

Rubinstein and Scharlemann [32] constructed a map from the complement of a graph in a
3-manifold to R2 from a pair of Heegaard splittings and used this to bound the number of
stabilizations required to turn one splitting into the other. Much of the analysis is similar to
ours.

Also independently, Hatcher and Thurston [14] considered Morse functions on a orientable
surface to show that its mapping class group is finitely presented. To get a set of generators,
they considered one-parameter deformations of the Morse function. Note that a one-parameter
family of maps from Σ to R is a map from the 3-manifold Σ × [0, 1] to R2 .

In a slightly different context, Hatcher’s proof of the Smale conjecture [12], that the space
of smooth 2-spheres in R3 is contractible, uses the Stein factorization of a map from S2 to
R2 . Hong, McCullough, and Rubinstein recently combined this approach with the Rubinstein–
Scharlemann techniques in their proof of the Smale conjecture for lens spaces [15].

On the other side of the story, Turaev [37, 38, 39] introduced shadow surfaces as the most
natural objects on which the Reshetikhin–Turaev quantum invariants are defined. He observed
that you could construct both a 3-manifold and a 4-manifold with boundary the 3-manifold
from a shadow surface.

Most recently, after this paper was first written, we became aware of the independent work of
Gromov [8], who studies questions on the required singularities of smooth maps in much greater
generality. In particular, he proves the lower bound on crossing number (Theorem 3.38) without
the precise constant [8, Section 3], sketches a proof of the upper bound on crossing number
(Theorem 5.7) in the case that the injectivity radius is bounded, and proves an optimality
result for the quadratic upper bound on maps.

Theorem 1.15 (Gromov [8, Section 6.3]). For every closed hyperbolic 3-manifold M , there
are a constant C > 0 and an infinite sequence {Mi} of finite coverings of degree di of M , such
that for every surface S of genus g and maps πi : Mi → S, the number of crossing singularities
of πi is at least Cd2

i /(g + 1).

Thus, several authors have been considering nearly the same objects (shadow surfaces on
the one hand and the Stein factorization of a map from M 3 to R2 on the other hand) for
several years. The gleams are key topological data from the shadow surface point of view, since
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−→

Figure 1. Proving that every surface bounds a 3-manifold: a generic map of a surface to R,
with regular values marked and disks glued into the inverse image of the regular values.

they let you reconstruct the 3-manifold, but they were not explicitly described by the authors
writing on Stein factorizations, although it is implicitly present.

Acknowledgements. We would like to thank Riccardo Benedetti, Mikhail Gromov, Simon
King, Robion Kirby, William Thurston, Vladimir Turaev, and an anonymous referee most
warmly for their encouraging comments and suggestions.

2. 4-manifolds from stable maps

In order to prove that 3-manifolds efficiently bound 4-manifolds, we start by sketching a proof
that 3-manifolds do bound 4-manifolds. In Section 4, we will analyze a version of the proof in
the PL setting and give a bound on the complexity of the resulting 4-manifold.

Consider an oriented, smooth, closed 3-manifold M 3 and a generic smooth map f from M
to R2 . At a regular value x ∈ R2 , the inverse image f−1(x) consists of an oriented union of
circles. To construct a 4-manifold, we glue a disk to each of these circles away from critical
values and then extend across the singularities in codimension 1 and codimension 2.

2.1. Pants decompositions from Morse functions

To get some idea of what the singularities look like, we first do the analysis of extension across
singularities one dimension down: let us prove that every oriented 2-manifold Σ2 bounds a
3-manifold. Consider a generic smooth map f from Σ to R, that is, a Morse function. The
inverse image of a regular value is again a union of circles. Glue in disks to each of these circles
as in Figure 1. More properly, take Σ × [0, 1], pick a regular value in each component of R

minus the singular set, and attach 2-handles along the circles appearing in the inverse image
of the chosen regular values. The result is a 3-manifold with one boundary component which
is Σ and other boundary components corresponding to the singular values of f .

The singular values of a Morse function, locally in the domain Σ, are well known: they are
critical points with a quadratic form which is definite (index 0 or 2, minima or maxima) or
indefinite (index 1, saddle points). Since our construction works with the entire inverse image
of a regular value, we need to understand the singularities locally in the range R; that is, we
need to know the connected components of inverse images of a critical value. This is easy for
the definite singularities.

Let p0 ∈ Σ be a saddle point, and let x0 ∈ R be its image. Near p0 , f−1(x0) is a cross. For x
above and below x0 , f−1(x) is locally the cross which is smoothed out in the two possible ways,
as on the top of Figure 2. Note that the orientations of Σ and R induce an orientation of f−1(x)
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Figure 2. Analyzing the saddle singularity.

for all x ∈ R except at critical points in Σ, so both of these smoothings must be oriented, so
the arms of the cross must be oriented alternately in and out. The connected component of
f−1(x0) containing p0 must join the arms of the cross in an orientation-preserving way and is
therefore a figure-8 graph . This implies that for a small interval I containing x0 , f−1(I)
is a pair of pants, as illustrated at the bottom of Figure 2.

To finish constructing the 3-manifold, recall that in the previous step we glued in disks at
all the regular values. Near this pair of pants, this means that we have closed off each hole in
the pair of pants, and the boundary component that we are trying to fill in is just a sphere,
which we can fill in with a ball.

An easier analysis shows that the surface that we need to fill in the other cases of a maximum
or a minimum is again a sphere.

Notice where the proof breaks down if we do not assume that Σ is oriented: there is then
another possibility for the inverse image of the critical value, with opposite arms of the cross
attached to each other: . In this case, the surface that we are left to fill in turns out to be
RP

2 , which does not bound a 3-manifold.
In a similar way, we can analyze the possible stable singularities of a smooth map from a

3-manifold M to R2 . We glue in a disk (a 2-handle) to each circle in the inverse image of a regular
point, extend across codimension-1 singularities by attaching 3-handles (the singularities look
just like the singularities we analyzed for the case of a surface, crossed with R), and then
consider the codimension-2 singularities. In Section 4.4, we will analyze the codimension-2
singularities (in the PL category) and see that the remaining boundary from each codimension-2
singularity is S3 , which can be filled in by attaching a 4-handle.

2.2. Stein factorization and shadow surfaces

For a more global view, we can consider the Stein factorization f = g ◦ h of these maps. The
Stein factorization of a map f with compact fibers decomposes it as the composition of a map h
with connected fibers and a map g which is finite-to-one. That is, h is the quotient onto the
space of connected components of the fibers of f . See Figure 3 for an example.

For a stable map from an oriented surface Σ to R, the Stein factorization is generically a
1-manifold, with singularities from the critical points. Concretely, it is a graph with vertices
which have valence 1 (at definite singularities) or valence 3 (at indefinite singularities). The
surface is a circle bundle over this Stein graph Γ at generic points. Likewise, the 3-manifold
that we constructed (with boundary Σ) is a disk bundle over Γ at generic points. In fact,
the 3-manifold collapses onto Γ. If we collapse all the valence 1 ends, we may think of Γ as
representing a pair-of-pants decomposition of Σ; each circle in the pair-of-pants decomposition
bounds a disk in the 3-manifold.

For a stable map from a 3-manifold to R2 , on the other hand, the Stein factorization is
generically a surface. The codimension-1 singularities of the Stein surface are products of the
lower-dimensional singularities with an interval, and have one or three sheets meeting at an



3-MANIFOLDS EFFICIENTLY BOUND 4-MANIFOLDS 711

h−→ g−→

Figure 3. The Stein factorization f = g ◦ h of the map in Figure 1.

Figure 4. Some local models for the Stein factorization of a map from a 3-manifold to R2 in
codimension 0, 1, and 2. In each picture, the map to the plane is the vertical projection.

edge at what we will call definite or indefinite folds, respectively. In codimension 2, there are
a few different configurations of how the surface can meet, the most interesting of which are
shown in Figure 4.

The 3-manifold is a circle bundle over the Stein surface at generic points and the 4-manifold
is generically a disk bundle. As in the previous case, it turns out that the 4-manifold collapses
onto the Stein surface. The resulting surface is very close to a shadow surface.

Unlike in the lower-dimensional case, the surface does not determine the 4-manifold (or
the 3-manifold), even after you fix a standard local model of how the surface sits inside the
4-manifold. The additional data that you need are the gleams, numbers associated to the
2-dimensional regions of the surface; see Definition 3.7.

3. Shadow surfaces

We will now define shadow surfaces and shadows of 3-manifolds and give a few examples. In
Section 3.2, we will extend the definitions to 3-manifolds with boundary and an embedded,
framed graph. For a more detailed though introductory account of shadows of 3- and
4-manifolds, see [5]. Note that these are slightly different from the Stein surfaces mentioned
in Section 2.2. We prefer shadow surfaces as the fundamental object, since they are a little
more symmetric and regular than Stein surfaces. From now on every manifold will be PL
compact and oriented unless explicitly stated otherwise, and every polyhedron will be finite;
we also recall that, in dimensions 3 and 4, each PL manifold has a unique smooth structure
and vice versa.

3.1. Shadows of 3-manifolds

For simplicity, we will first define shadows in the case when there is no boundary, appropriate
for 3-manifolds without boundary or other decorations; in the next section we will extend
this.
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Region Edge Vertex

Figure 5. For each point of a simple polyhedron embedded in a 4-manifold, there is
a local chart (U, φ) in which the polyhedron is flat in the sense that is embedded in a
3-dimensional plane, and in this plane it appears as in one of the three models shown
above.

Definition 3.1. A simple polyhedron P is a compact topological space where every point
has a neighborhood homeomorphic to a neighborhood of the central point in one of the local
models depicted in Figure 5, namely R2 , R × Cone(three points), and Cone(1-skeleton of
tetrahedron). The set of points without a local model of the leftmost type forms a 4-valent
graph, called the singular set of the polyhedron and denoted Sing(P ). The vertices of Sing(P )
are called vertices of P . The connected components of P\Sing(P ) are called the regions of P .
The set of points of P whose local models correspond to the boundaries of the blocks shown
in the figure is called the boundary of P and is denoted ∂P ; P is said to be closed if it has an
empty boundary. A region is internal if its closure does not touch ∂P . A simple polyhedron is
standard if every region of P is a disk, and hence Sing(P ) has no circle components.

Definition 3.2. Let W be a PL, compact, and oriented 4-manifold. P ⊂ W is a shadow
for W if P is a closed simple subpolyhedron onto which W collapses and P is locally flat in W ,
that is, for each point p ∈ P there exists a local chart (U, φ) of W around p such that φ(P ∩ U)
is contained in R3 ⊂ R4 .

It follows from this definition that in the 3-dimensional slice, the pair (R3 ∩ φ(U), R3 ∩ φ(U ∩
P )) is PL-homeomorphic to one of the models depicted in Figure 5.

For the sake of simplicity, from now on we will skip the PL prefix and all the homeomorphisms
will be PL unless explicitly stated otherwise. Not every 4-manifold admits a shadow: a necessary
and sufficient condition for W to admit one is that it has a handle decomposition containing
no handles of index greater than 2; see [4, 37]. This imposes restrictions on the topology of W .
For instance, its boundary has to be a nonempty connected 3-manifold.

Definition 3.3. A shadow of an oriented, closed 3-manifold M is a closed shadow P of a
4-manifold W with M = ∂W .

Theorem 3.4 (Turaev [37]). Any closed, oriented, connected 3-manifold has a shadow.

Example 3.5. The simple polyhedron P = S2 is a shadow of S2 × D2 , and hence of the
3-manifold S2 × S1 . In this case, P is a surface whose self-intersection number in the ambient
4-manifold is zero. Consider now the disk bundle over S2 with Euler number equal to 1,
homeomorphic to a punctured CP

2 . The 0-section of the bundle is a shadow of the 4-manifold
homeomorphic to P , and so P is a shadow of CP

2 − B4 and of its boundary: S3 .

The above example shows that the naked polyhedron by itself is not sufficient to encode the
topology of the 4-manifold collapsing on it. Turaev described [37] how to equip a polyhedron
embedded in a 4-manifold with combinatorial data called gleams that are sufficient to encode
the topology of the regular neighborhood of the polyhedron in the manifold. A gleam is a
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D D

Figure 6. An example of the set U(D) in the case that D is a disc. Left: the band is an
annulus. Right: the band is a Möbius strip; the combination is not embeddable in R3 .

coloring of the regions of the polyhedron with values in 1
2 Z, with value modulo 1 given by a

Z2-gleam which depends only on the polyhedron.
In the simplest case, if P is a shadow of M and P is homeomorphic to an orientable surface,

then W is homeomorphic to an oriented disk bundle over the surface and the gleam of P is
the Euler number of the normal bundle of P in W .

We summarize in the following proposition the basic construction of the Z2-gleam and of the
gleam of a simple polyhedron. A framing for a graph G in a 3-manifold M is a surface with
boundary embedded in M and collapsing onto G.

Proposition 3.6. Let P be a simple polyhedron. There exists a canonical Z2-coloring of
the internal regions of P called the Z2-gleam of P . If P is embedded in a 4-manifold W in a
flat way, there is a canonical coloring of the internal regions of P by integers or half integers
called gleams, such that the gleam of a region of P is an integer if and only if its Z2-gleam is
zero. Moreover, if ∂P ⊂ ∂W is framed, then the gleam can also be defined on the noninternal
regions of P .

Proof. Let D be an internal region of P and let D be the abstract compactification of the
(open) surface represented by D. The embedding of D in P extends to a map i : D → P which
is injective on int(D), is locally injective on ∂D, and sends ∂D into Sing(P ). In the case that
i is injective, define a simple polyhedron U(D) to be a small open regular neighborhood of D
in P . In general, using i we can ‘pull back’ a regular neighborhood of i(∂D) and attach it to
D to construct a simple polyhedron U(D) that collapses onto D. The map i extends to a map
i′ : U(D) → P . The polyhedron U(D) is constructed from D as follows:

(i) for each boundary component C of D take a band, either an annulus or a Möbius strip,
and attach C to the core of the band; and

(ii) for each point p ∈ ∂D such that i(p) is a vertex, take an arc A properly embedded in the
corresponding band, meeting the core C transversally at p, and attach a half of the boundary
of a disk to A.
An example in the case that D is a disk is shown in Figure 6. We define the Z2-gleam of D
in P to be equal to the number of Möbius strip bands in the construction of U(D), modulo 2.
This coloring depends only on the combinatorial structure of P .

Let us now suppose that P is embedded in a 4-manifold W , and let D, D, i : D → P , U(D)
and i′ be defined as above. Using i′, we can ‘pull back’ a neighborhood of D in W to an oriented
4-ball B4 collapsing on U(D). The regular neighborhood of a point p0 ∈ ∂D ⊂ U(D) sits in a
3-dimensional slice B3

0 of B4 where it appears as in Figure 7. The direction along which the
other regions touching ∂D get separated gives a section of the bundle of orthogonal directions
to D in B4 . (If p0 ∈ ∂P , use the framing of ∂P in place of the other regions. By an orthogonal
direction, we mean a line in the normal bundle, not a ray.) This section can be defined on
all ∂D and the obstruction to extending it to all of D is an element of H2(D, ∂D;π1(S1)).
Since B4 is oriented, we can canonically identify this element with an integer and define the
gleam of D to be half of this number.
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Figure 7. The picture sketches the position of the polyhedron in a 3-dimensional slice of
the ambient 4-manifold. The horizontal plane is our region of interest D. The direction
indicated by the vertical double arrow is the one along which the two regions touching the
horizontal one get separated.

We can also go in the other direction, from gleams to 4-manifolds.

Definition 3.7. A gleam on a simple polyhedron P is a coloring on all the regions of P
with values in 1

2 Z, such that the color of each internal region is an integer if and only if its
Z2-gleam is zero.

Theorem 3.8 (Reconstruction of a 4-manifold; Turaev [37]). Let P be a polyhedron with
gleams g; there exists a canonical reconstruction associating to P and g a pair (WP ,P ). Here
WP is a PL, compact, oriented 4-manifold containing a properly embedded copy of P with
framed boundary, so that WP collapses onto P and so that the gleam of P in WP coincides
with g. The pair (WP ,P ) can be explicitly reconstructed from P and its gleam. Moreover, if
P is a polyhedron embedded in a PL, compact, oriented 4-manifold W , ∂P is framed, and g is
the gleam induced on P as explained in the Proposition 3.6, then WP is homeomorphic to the
regular neighborhood of P in W .

Hence, to study 4-manifolds with shadows (and their boundaries), one can either use abstract
polyhedra equipped with gleams or embedded polyhedra.

From now on, each time we speak of a shadow of a 3-manifold as a polyhedron, we will be
implicitly taking a 4-dimensional thickening of this polyhedron whose boundary is the given
3-manifold or, equivalently, a choice of gleams on the regions of the polyhedron.

Example 3.9. Let M be a 3-manifold which collapses onto a simple polyhedron P whose
regions are orientable surfaces; it is straightforward to check that the Z2-gleam of P is
everywhere zero. Let us then equip P with the gleam which is zero on all the regions; Turaev’s
thickening construction produces the 4-manifold W = M × [−1, 1] and P is a shadow of ∂W ,
homeomorphic to the double of M .

3.2. Shadows of framed graphs in manifolds with boundary

In this section, we extend the definition of shadows to pairs (M,G) where M is a 3-manifold,
possibly with boundary, and G ⊂ M is a (possibly empty) framed graph with trivalent vertices
and univalent ends. To do this, we allow the simple polyhedron to have boundary.
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Definition 3.10. A boundary-decorated simple polyhedron P is a simple polyhedron
where ∂P is equipped with a cellularization whose 1-cells are colored with one of the following
colors: i (internal), e (external), and f (false). We can correspondingly distinguish three
subgraphs of ∂P intersecting only in 0-cells and whose union is ∂P : let us call them ∂iP ,
∂eP , and ∂f P . A boundary-decorated simple polyhedron is said to be proper if ∂f (P ) = ∅.

We can turn decorated polyhedra into shadows. The intuition is that ∂f (P ) is ignored, ∂e(P )
is drilled out to create the boundary of the 3-manifold, and ∂i(P ) gives a trivalent graph.

Definition 3.11. Let P be a boundary-decorated simple polyhedron, properly embedded
in a 4-manifold W which collapses onto P with a framing on ∂i(P ). Let M be the complement
of an open regular neighborhood of ∂eP in ∂W , and let G be a framed graph whose core is
∂i(P ). Then we say that P is a shadow of (M,G) and, if ∂f P = ∅, we call it a proper shadow.
As before, we can define a gleam on each region of P that does not meet ∂f (P ) ∪ ∂e(P ).

Remark 3.12. Turaev’s reconstruction theorem extends to the case of decorated polyhedra
equipped with gleams on the regions not touching ∂eP ∪ ∂f P .

Remark 3.13. The genus of a boundary component of M equals the rank of H1 of the
corresponding component of ∂e(P ), since the Euler characteristic of the handlebody filling the
boundary component is equal to the Euler characteristic of the graph. In particular, components
of ∂e(P ) corresponding to sphere boundary components of M are contractible, and so if ∂f (P )
is empty, M has no sphere boundary components that do not meet G.

Theorem 3.14 (Turaev [37]). Let M be an oriented, connected 3-manifold and let G be
a properly embedded framed graph in M with vertices of valence 1 or 3. If M has no spherical
boundary components that do not meet G, the pair (M,G) has a proper, simply connected
shadow.

Let us now show how to construct a shadow of a pair (M,G) given a shadow P of (M, ∅).
Recall that M is the boundary of a 4-manifold collapsing through a projection π onto P . Up to
small isotopies, we can suppose that the restriction to G of π is transverse to Sing(P ) and to
itself; that is, it does not contain triple points or self-tangencies and is injective on the vertices
of T . Let us also suppose that it misses ∂f (P ). Then the mapping cylinder of the projection
of G in P is contained in the thickening WP of P and WP collapses on it. (Recall that the
mapping cylinder is P ∪ G × [0, 1], with G × {0} identified with π(G) ⊂ P .) By Proposition 3.6,
we can equip this polyhedron with gleams. Coloring G × {1} with the color i, we get a shadow
of the pair (M,G), coloring it with e we get a shadow of M − U(G), where U(G) is a small
open regular neighborhood of G in M , and coloring it with f we get another shadow of M
(necessarily not proper).

As a warm up, note that a flat disk D whose boundary has color f is a shadow of the pair
(S3 , ∅). The open solid torus Th = π−1(int(D)) can be imagined as the regular neighborhood
of the closure of the z-axis in R3 , embedded inside S3 in the standard way. The fibers of
π : S3 → D run parallel to the z-axis away from ∞ and are unknotted. The projection of the
solid torus Tv = S3\Th is ∂D.

With the setup above, we now apply the projection construction to the case of a link L
in S3 . Up to isotopy, we can suppose that L ⊂ Th and that its projection to D is generic;
so it is sufficient to consider a standard diagram of L in the unit disk in R2 . The mapping
cylinder DL of π : L → D is obtained from D by gluing an annulus for each component of L
and marking the free boundary components of these annuli with the color i. We can further
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Figure 8. In the left part of the picture, we sketch the construction described in
Example 3.15; the resulting shadow is drawn in the right part where for the two internal
regions we write their gleams. Note that, after the collapse of the polyhedron DL along
its free boundary component (as indicated by the arrows), the only vertex surviving is the
central one.

+1

Figure 9. The shadow obtained for the Hopf link.

collapse the region of DL containing ∂f D; this produces a simple subpolyhedron of DL , which
we call PL . By construction ∂PL = ∂iPL = L.

In general, PL has some vertices, each corresponding to a crossing in the diagram of L.
However, some of the crossings in that diagram of L do not generate vertices in PL because
they disappear when we pass from DL to PL .

Example 3.15. Applying the construction to a figure-8 knot in a standard position, one
gets a shadow of its complement containing only one vertex: three of the four crossings of the
diagram are contained in the boundary of the region to be collapsed in PL . See Figure 8.

Example 3.16. Consider a standard Hopf link in Th . The polyhedron H that one gets by
applying the above procedure contains no vertices: the two crossings of the standard projection
of the Hopf link in R2 touch the region of D which is collapsed. The resulting polyhedron can
be obtained by gluing a disk to the core of an annulus; its embedding in B4 is such that ∂H
is the Hopf link in ∂B4 . See Figure 9.

Example 3.17. Applying this construction to the graph ∂P in Figure 20 (with the
projection shown there) gives the shadow in Figure 21.
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3.3. Shadow complexity and its basic properties

We will now define a notion of shadow complexity and study how it behaves under combining
manifolds, either via connect sum (gluing along spheres) or torus connect sum (gluing along
torus boundaries).

Definition 3.18. For M to be an oriented 3-manifold (possibly with boundary) and T ⊂
M a trivalent graph, the shadow complexity sc(M,T ) of the pair (M,T ) is the minimal number
of vertices of a boundary-decorated shadow of (M,T ).

Remark 3.19. If M has no spherical boundary components, it does not matter whether or
not we allow the shadow to have false edges in this definition: if we have a decorated shadow P1
for (M,T ), it can be shown that the polyhedron P2 obtained by iteratively collapsing all the
regions of P1 containing a false boundary edge is a complex obtained by gluing some graphs to
a (possibly disconnected) simple polyhedron. This complex P2 can be modified, without adding
vertices, to give a shadow P3 for (M,T ) without false edges and no more vertices than P1 ; the
modifications are generally similar to those in Lemma 3.22, with a few special constructions
for cases where the complex is contractible (so M is S3) or the graph has nontrivial loops,
producing S1 × S2 summands in the prime decomposition. All of these special cases are graph
manifolds. By Proposition 3.31, they can be treated without creating any vertices.

Such a notion of complexity is similar to the usual notion of complexity of 3-manifolds
introduced by S. Matveev [27].

Definition 3.20. The complexity c(M) of a 3-manifold M is the minimal number of
vertices in a simple polyhedron P contained in M which is a spine for M or M minus a ball.

Both notions are based on the least number of vertices of a simple polyhedron describing (in
a suitable sense) the given manifold. Despite this similarity, shadow complexity is not finite.
That is, the set of manifolds having complexity less than or equal to any given integer is infinite.
For instance, the lens spaces L(p, 1) have a shadow surface which is S2 with gleam p, and so
they all have shadow complexity 0.

To reduce the set of attainable manifolds to a finite number and bound the complexity of
the 4-manifold, we also need to bound the gleams.

Definition 3.21. The gleam weight |g| of a shadow polyhedron (P, g) is the sum of the
absolute values of the gleams on the regions of P .

Lemma 3.22. Shadow complexity is subadditive under connected sum: for M1 , M2 two
oriented 3-manifolds containing graphs T1 , T2 ,

sc(M1 # M2 , T1 ∪ T2) � sc(M1 , T1) + sc(M2 , T2).

Proof. Let P1 and P2 be two shadows for (M1 , T1) and (M2 , T2) having the least number
of vertices, and let W1 and W2 be the corresponding 4-thickenings. To construct a shadow of
the connect sum, let x1 and x2 be two points in regions of P1 and P2 , respectively, and join
them by an arc. The polyhedron that we get can be embedded as a shadow of the boundary
connected sum of W1 and W2 . This polyhedron is not simple, so we modify the construction
slightly: roughly speaking, we put our fingers at the two ends of the arc and push P1 toward P2
along the arc until they meet in the middle along a disk. More precisely, we identify a closed
regular neighborhood of x1 and x2 , and put gleam 0 on the resulting disk region.
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Question 3.23. Is shadow complexity additive under connected sum?

If the answer to the above question were ‘yes’, a consequence would be the following.

Lemma 3.24. If shadow complexity is additive under connected sum, then for any closed
3-manifold M ,

sc(M) � 2c(M),

where c(M) is Matveev’s complexity.

Proof. Let P be a minimal spine of M , that is, a simple polyhedron whose 3-thickening is
homeomorphic to the complement M ′ of a ball in M and containing the least possible number
of vertices. Then P , equipped with gleam 0 on every region, is a shadow of M ′ × [−1, 1], with
boundary M # M . Therefore, sc(M # M) � c(M) and the thesis follows.

It is worth noting that the consequence of the above lemma is true for all the 3-manifolds
with Matveev’s complexity up to 9: we were able to check the inequality for all of them using
Proposition 3.27 and the basic blocks exhibited by Martelli and Petronio [26].

We next show that shadow complexity does not increase under Dehn surgery.

Lemma 3.25. Let L be a framed link contained in an oriented 3-manifold M and let P be
a shadow of (M,L). A manifold M ′ obtained by Dehn surgery on L has a shadow obtained by
capping each component of ∂P by a disk.

Proof. Let W be a 4-thickening of P . Surgery of M along a component of L with integer
coefficients corresponds to gluing a 2-handle to W . Gluing the core of this 2-handle to P gives
a shadow of W , and the definition of Dehn surgery on a framed link ensures that the gleam on
the capped region does not change.

Remark 3.26. Lemma 3.25, together with the projection construction described in
Section 3.2, gives an easy proof that any closed 3-manifold has a shadow, since any 3-manifold
can be presented by an integer surgery on a link in S3 .

Proposition 3.27. Let M1 and M2 be two oriented manifolds such that both ∂M1 and
∂M2 contain torus components T1 and T2 . Let P1 and P2 be shadows of M1 and M2 , and
let M be any 3-manifold obtained by identifying T1 and T2 with an orientation-presevering
homeomorphism. Then M has a shadow which can be obtained from P1 and P2 without
adding any new vertices. In particular, any Dehn filling of a 3-manifold can be described
without adding new vertices.

Proof. Let W1 and W2 be the 4-thickenings of P1 and P2 . The tori T1 and T2 are equipped
with the meridians µ1 and µ2 of the external boundary components l1 and l2 of P1 and P2 .
Also fix longitudes λi on them. The orientation-reversing homeomorphism identifying T2 and T1
sends µ2 into a simple curve aλ1 + bµ1 and λ2 into a curve cλ1 + dµ1 .

We now describe how to modify P1 and construct a shadow P ′
1 of M1 embedded in a new 4-

manifold W ′
1 , such that the meridian induced by P ′

1 on T1 is the curve aλ1 + bµ1 . To construct
P ′

1 , let us construct a shadow of the Dehn filling of M1 along T1 whose meridian is aλ1 + bµ1 . It
is a standard fact that any surgery on a framed knot can be translated into an integer surgery
over a link as shown in Figure 10.

With the notation of the figure, we glue n copies of the polyhedron H of Example 3.16 to P1 ,
so that one component of ∂H1 is identified with l1 , Hj is glued to Hj+1 and Hj−1 , and the free
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r
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a1 a2 an−2 an−1 an

Figure 10. In this picture we show how to transform a rational surgery with coefficient
r over a knot into an integer surgery over a link. The ai are the coefficients of a modified
continued fraction expansion of r, in the form r = a0 − 1/(a1 − (1/a2 · · · − 1/an )).

+1

+1

+1

+1

a0 − 1
a1 − 2

a2 − 2

an−1 − 2

an − 1

Figure 11. The shadow with no vertices corresponding to the surgeries on the chain in
Figure 10. Intrinsically in the 4-manifold, this is equivalent to a chain of spheres, each
intersecting the next in just one point.

component of ∂Hn is a knot l′1 . On the level of the boundary of the thickening, we are gluing n
copies of the complement of the Hopf link in S3 to M . Since the complement of the Hopf link is
T 2 × [0, 1], the final 3-manifold is unchanged. But now the polyhedron P ′

1 = P1 ∪ H1 ∪ . . . ∪ Hn

can be equipped with gleams so to describe the operation of Figure 10. The meridian µ′
1 of

l′1 is now by construction the curve which, expressed in the initial base of T1 , is aλ1 + bµ1 .
Hence, we can now glue P ′

1 and P2 along l′1 and l2 and choose suitably the gleam of the region
of P ′

1 ∪ P2 to obtain the desired homeomorphism.

Corollary 3.28. Shadow complexity is subadditive under torus sums, that is, under the
gluing along toric boundary components through orientation-reversing homeomorphisms.

One special case of torus sums is surgery, gluing in a solid torus. Surgery can decrease any
reasonable notion of complexity, so shadow complexity cannot be additive under torus sums
in general; hence we ask the following question.

Question 3.29. Let M1 and M2 be two oriented 3-manifolds with incompressible torus
boundary components T1 and T2 . Is it true that any torus sum of M1 and M2 along T1 and T2
has shadow complexity equal to sc(M1) + sc(M2)?
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3.4. Complexity zero shadows

In this section, we classify the manifolds having zero shadow complexity.

Definition 3.30. An oriented 3-manifold is said to be a graph manifold if it can be
decomposed by cutting along tori into blocks homeomorphic to solid tori and R × S1 , where
R is a pair of pants (that is, a thrice-punctured sphere).

Graph manifolds can also be characterized as those manifolds which have only Seifert fibered
or torus bundle pieces in their JSJ decomposition.

Proposition 3.31 (Complexity zero manifolds). The set of oriented 3-manifolds admitting
a shadow containing no vertices coincides with the set of oriented graph manifolds.

Proof. To see that any graph manifold has a shadow without vertices, notice that a disk
with boundary colored by e is a shadow of a solid torus and, similarly, a pair of pants R is a
shadow of R × S1 . Proposition 3.27 shows that any gluing of these blocks can be described by
a shadow without vertices.

For the other direction, we must show that if a 3-manifold M has a shadow P without
vertices, then it is a graph manifold. The polyhedron P can be decomposed into basic blocks
as follows. Since P contains no vertices, a regular neighborhood of Sing(P ) in P is a disjoint
union of blocks of the following three types:

(i) the product of a Y -shaped graph and S1 ;
(ii) the polyhedron obtained by gluing one boundary component of an annulus to the core

of a Möbius strip; and
(iii) the polyhedron obtained by considering the product of a Y -shaped graph and [−1, 1]

and identifying the graphs Y × {1} and Y × {−1} by a map which rotates the legs of
the graph of 2π

3 .

Let π : M → P be the projection of M on P . The complement of the above blocks in P is
a disjoint union of (possibly nonorientable) compact surfaces. The preimage under π of each
of these surfaces is a (possibly twisted) product of the surface with S1 , and hence is a graph
manifold. Moreover, the preimage under π of the above three blocks is a 3-dimensional sub-
manifold of M which admits a Seifert fibration (induced by the direction parallel to Sing(P )),
and hence is a graph manifold.

3.5. Decomposing shadows

In Proposition 3.31, we saw how to decompose a shadow with no vertices into elementary
pieces. For more general shadows, we will need a new type of block. For simplicity, we will
suppose that the boundary of P is all marked ‘external’ and that the singular set Sing(P ) of
the shadow P is connected and contains at least one vertex. (The latter statement can always
be achieved by modifying P with suitable local moves.) Let P be a shadow for a 3-manifold
M , possibly with nonempty boundary, and let π : M → P be the projection. Then we have the
following.

Proposition 3.32. The combinatorial structure of P induces through π−1 a decomposition
of M into blocks of the following three types:

(i) products F × S1 , where F is an orientable surface, or F ×̃ S1 with F nonorientable;
(ii) products of the form R × [−1, 1], where R is a pair of pants; and
(iii) genus-3 handlebodies.



3-MANIFOLDS EFFICIENTLY BOUND 4-MANIFOLDS 721

Proof. Decompose the polyhedron P by taking regular neighborhoods of the vertices and
then regular neighborhoods of the edges in the complement of the vertices. This decomposes P
into blocks of the following three types:

(i) surfaces (corresponding to the regions);
(ii) pieces homeomorphic to the product of a Y -shaped graph and [−1, 1]; and
(iii) regular neighborhoods of the vertices.
The preimage of the first of these blocks is a block of the first type in the statement. Let

us consider the preimages of the products Y × [−1, 1]. The 4-dimensional thickening of one of
these blocks is the product of the 3-dimensional thickening Y of the Y -graph and [−1, 1], where
Y is a 3-ball containing a properly embedded copy of Y and collapsing on it. The preimage
in M of this block is the product of [−1, 1] with ∂Y − ∂Y , which is a pair of pants.

Let us denote by V the simple polyhedron formed by a regular neighborhood of a vertex
in P . We are left to show that π−1(V ) is a genus-3 handlebody. The 4-thickening of V is
V × [−1, 1], where V is the 3-dimensional thickening of V , that is, a 3-ball into which V is
properly embedded. In particular, ∂V ⊂ ∂V is a tetrahedral graph and so ∂V is split into
four disks by ∂V . One can decompose ∂(V × [−1, 1]) as ∂V × [−1, 1] ∪ ∂V × {−1, 1}. The
part of this boundary corresponding to M is the complement of ∂V and is homeomorphic to
V × {−1} ∪ (∂V − ∂V ) × [−1, 1] ∪ V × {1}; this is composed of two 3-balls connected through
four handles of index 1 (each of which corresponds to one of the four disks into which ∂V splits
∂V).

Note that the boundaries of the blocks of the second two types in Proposition 3.32 are
themselves naturally decomposed into annuli and pairs of pants.

3.6. A family of universal links

Now suppose further that P (and therefore M) has no boundary, and consider the union of the
blocks of the second two types in Proposition 3.32. These two types of blocks meet in pairs of
pants, and the remaining boundary is obtained from the annuli; therefore, we are left with a
manifold SP with boundary a union of tori, which depends only on the polyhedron P and not
on the gleams. (The original manifold M can be obtained by surgery on SP .)

In this section, we show that SP is a hyperbolic cusped 3-manifold whose geometrical
structure can be easily deduced from the combinatorics of P . We furthermore show how to
present SP as the complement of a link in a connected sum of copies of S2 × S1 .

As before, let P be a simple polyhedron (now with no boundary) such that Sing(P ) is
connected and contains at least one vertex; let c(P ) be the number of vertices. Let S(P ) be the
regular neighborhood of Sing(P ) in P , which we think of as a simple polyhedron with boundary
colored ‘internal’. Let l1 , . . . , lk be the components of ∂S(P ) in P . To each li we assign a positive
integer number ci called its valence by counting the number of vertices touched by the region
Ri of S(P ) containing li and an element of Z2 given by the Z2-gleam gi of the region of S(P )
containing li .

Let XP be the 4-thickening of S(P ) provided by Turaev’s reconstruction theorem; XP

collapses onto a graph with Euler characteristic χ(S(P )) = −c(P ), and so ∂XP is a connected
sum of c(P ) + 1 copies of S2 × S1 . Moreover, ∂S(P ) is a link LP in ∂XP . The manifold SP

introduced earlier is the complement of LP in ∂XP .
SP has a natural hyperbolic structure which we can understand in detail, as we will now

see.

Proposition 3.33. For any standard shadow surface P , SP can be equipped with a
complete, hyperbolic metric with volume equal to 2voctc.
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Figure 12. In this picture we show how to connect the two balls B0 and B∞ in S3 using
the four legs Li , i = 1, . . . , 4. In the center of B0 , we visualize how the regular octahedron
O0 is embedded. In the figure, the four internal faces are directed toward the four
legs of the handlebody, since they are identified with the four internal faces of the
octahedron O∞.

Proof. The main point of the proof is to construct a hyperbolic structure on a block
corresponding to a vertex in S(P ) and then to show that these blocks can be glued by isometries
along the edges of S(P ).

Let us realize a block of type 3 as follows. In S3 , pick two disjoint 3-balls B0 and B∞ forming
neighborhoods, respectively, of 0 and ∞. Connect them using four 1-handles Li , i = 1, . . . , 4,
positioned symmetrically, as shown in Figure 12.

In the boundary of the genus-3 handlebody so obtained, consider the four thrice-punctured
spheres formed by regular neighborhoods of the theta-curves connecting B0 and B∞, each of
which is formed by 3-segments parallel to the cores of three of the 1-handles. These four pants
are the surfaces onto which the blocks of type 2 in Proposition 3.32 are to be glued. Indeed,
these blocks are of the form R × [−1, 1] where R is a thrice-punctured sphere, and they are
glued to the blocks of type 3 along R × {−1, 1}. We will now exhibit a hyperbolic structure
on this block, so that these four thrice-punctured spheres become totally geodesic and their
complement is formed by six annuli which are cusps of the structure.

Consider a regular tetrahedron in B0 whose barycenter is the center of B0 and whose vertices
are directed in the four directions of the 1-handles Li . Truncate this tetrahedron at its midpoints
as shown in Figure 12. The result is a regular octahedron O0 contained in B0 , with four faces
(called ‘internal’) corresponding to the vertices of the initial tetrahedron, and four faces (called
‘external’) corresponding to the faces of the initial tetrahedron. Do the same construction
around ∞ and call the result O∞. The handlebody B0 ∪ B∞ ∪ Li , i = 1, . . . , 4, can be obtained
by gluing the internal faces of O0 to the corresponding internal faces of O∞. The remaining
parts of the boundaries of the two octahedra are four spheres, each with three ideal points
and triangulated by two triangles. If we put the hyperbolic structure of the regular ideal
octahedron on both O0 and O∞, then after truncating with horospheres near the vertices,
we get the hyperbolic structure we were searching for: the geodesic thrice-punctured spheres
come from the boundary spheres without their cone points and the annuli are the cusps of the
structure. Each (annular) cusp has an aspect ratio of 1

2 , since it is the union of two squares,
the sections of the cusps of an ideal octahedron near a vertex. To show that these blocks can


