By Lauret J.

**Read or Download A Canonical Compatible Metric for Geometric Structures on Nilmanifolds PDF**

**Similar mathematics books**

**The Mathematics of Paul Erdos II (Algorithms and Combinatorics 14)**

This can be the main finished survey of the mathematical lifetime of the mythical Paul Erd? s, essentially the most flexible and prolific mathematicians of our time. For the 1st time, the entire major components of Erd? s' study are coated in one venture. due to overwhelming reaction from the mathematical group, the undertaking now occupies over 900 pages, prepared into volumes.

- Homotopie Rationnelle. Modeles de Chen Quillen Sullivan
- Die Mathematiker und Astronomen der Araber und ihre Werke
- Seminaire Bourbaki 1972-1973, exposes 418-435
- Handbook of Mathematical Fluid Dynamics: Volume 2
- Einstein's theory: A rigorous introduction for the mathematically untrained
- Mathematics for Computer Scientists

**Extra resources for A Canonical Compatible Metric for Geometric Structures on Nilmanifolds**

**Example text**

For some ϕ = (ϕ1 , ϕ2 ) ∈ GL(n1 ) × GL(n2 ), then it is easy to see that jμ (Z ) = ϕ1 jμ ϕ2t Z ϕ1t , ∀Z ∈ n2 . Acknowledgements I wish to express my gratitude to the whole Yale University Math Department for its hospitality during the academic years 2002/03. References 1. Apostolov, V. : The Riemannian Goldberg-Sachs theorem, Int. J. Math. 8 (1997), 421–439. 2. , Tricerri F. : Generalized Heisenberg groups and Damek-Ricci harmonic spaces, Lect. Notes in Math, 1598 (1995) Springer-Verlag, Berlin Heidelberg.

On the classification of geometric structures on nilmanifolds, preprint 2003. 24. -V. : Anti-complexified Ricci flow on compact symplectic manifolds, J. reine angew. Math. 530 (2001), 17–31. 25. : On the real moment map, Math. Res. Lett. 8 (2001), 779–788. 26. , Fogarty, J. : Geometric Invariant Theory, 3rd edn, Berlin-Heidelberg: Springer Verlag (1994). 27. : A stratification of the null cone via the momentum map, Amer. J. Math. 106 (1984), 1281–1329 (with an appendix by D. Mumford). 28. Richardson, R.

Blair, D. : Critical associated metrics on symplectic manifolds, Contemp. Math. 51 (1986), 23–29. 6. Blair, D. : Critical associated metrics on contact manifolds II, J. Aust. Math. Soc. 41 (1986), 404–410. 7. : Characteristic nilpotent Lie algebras and symplectic structures, preprint 2004. 8. -D. : Recent developments on the Ricci flow, Bull. Amer. Math. Soc. 36 (1999), 59–74. 9. , Leite, M. : Negative Ricci curvature on complex simple Lie groups, Geom. Dedicata 17 (1984), 207–218. 10. Dotti, I.